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Abstract The thermal-stress problem of an infinite strip containing an infinite row of periodically distributed
edge cracks normal to its edge is investigated. The surrounding temperature adjacent to the crack-containing edge
is assumed to be cooled suddenly to simulate the thermo-shock condition. By the superposition principle, the for-
mulation leads to a mixed-boundary-value problem, with the negating tractions derived from the thermal stresses
of a crack-free infinite strip. An integral equation is obtained and solved numerically. The effect on the SIFs
(stress-intensity factors) due to the presence of periodically distributed cracks in an infinite strip is delineated.
The normalized SIFs increase as the stacking cracks separate, due to the reduction of the shielding effect. After
a characteristic time period, the negating tractions along the crack faces become almost linear. The SIF solutions
under the considered crack geometry are worked out in detail for the case of linear traction loading.

Keywords Cracks · Integral transform · Stress-intensity factors · Thermal loads

1 Introduction

The thermo-mechanical analysis under thermal-shock condition is of vital importance for the primary system of
reactor structures, especially in the presence of pre-existing cracks. The cracking of embrittled solids, due to thermal
transients, has long been recognized as an intrinsic failure mechanism. The transient thermal analysis for an elastic
strip with cracks has attracted many investigators [1–4]. The problems of an edge crack in an infinite strip were
investigated under different thermal boundary conditions. Shindo and Atsumi studied the case of an infinite plate
containing an infinite row of parallel cracks under thermal stresses [5,6]. Davidson examined the problem of a
collinear array of Griffith cracks contained in an infinite strip [7].

Under the thermal-shock condition, the cooling phase in the plate surface is generally regarded as the most
severe [3,4], while in the surface-heating phase the edge cracks along the surface may partially close. Qing and
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Yang [8] analyzed the problem of a semi-infinite plate containing an infinite row of periodically distributed cracks
normal to its edge. The present paper deals with an infinite strip of finite width with an infinite row of periodi-
cally distributed edge cracks. The issue concerns the determination of SIFs when the strip is subjected to different
thermal boundary conditions. The strip occupies the region of 0 ≤ X ≤ a and −∞ < Y < +∞, and deforms
in a plane-strain or plane-stress condition. The cracks, being thermally insulated and traction-free, are configured
as a periodic array defined by 0 ≤ X ≤ c1, Y = 2Nb1, with N = 0,±1,±2, . . . (as shown in Fig. 1). The plate
is assumed to be composed of homogeneous, linear and isotropic material and the inertia effect is neglected. The
study on dynamic thermo-elasticity in [9] validated this assumption. The thermo-elastic coupling, as well as the
temperature dependence of thermo-elastic constants, are ignored for simplicity.

The solution of the problem is obtained by using the superposition technique, developed from the following
thought experiments. First, the thermal stresses within the uncracked strip are evaluated. Second, the perturbation
problem for the cracked strip is formulated with the crack-face tractions negating the thermo-elastic stresses deter-
mined in part one. The problem is reduced to an integral equation through the integral-transform technique, which
is then solved numerically. Results are obtained for various loadings and geometry parameters.

2 Heat conduction and thermal stresses

Consider a homogeneous, isotropic and thermo-elastic plate in the form of an infinite strip containing an infinite
stack of periodically distributed edge cracks, as shown in Fig. 1. The crack surfaces are thermally insulated. The strip
and the surrounding environment are initially at uniform temperature T0. Due to thermal loading, the surrounding
temperature adjacent to the crack-containing edge is suddenly cooled from T0 to T∞. The temperature differences
from the edge are defined as

�(X, τ) = T (X, τ) − T0, �1 = T∞ − T0, �2 = 0,

where �1 and �2 denote the surrounding temperature differences adjacent to the boundaries X = 0 and X = a,
respectively. To normalize the problem, the following quantities are introduced:

x = X/a, t = Dτ/a2, θ(x, t) = �(x, t)/�1,

where D is the thermal diffusivity. Then the governing heat-conduction equation is given by

∂2θ(x, t)

∂x2 = ∂θ(x, t)

∂t
. (1)

The initial and boundary conditions are specified as

θ(x, 0) = 0,

{−θ ′(0, t) + ah1θ(0, t) = ah1

θ ′(1, t) + ah2θ(1, t) = 0
, (2)

where h1 and h2 are the thermal exchanging coefficients between the strip and the surrounding environments at
X = 0 and X = a, respectively.

After lengthy but straightforward algebra, the temperature field of this heat-conduction problem can be obtained
in the following form:

θ(x, t) = h1

h1 + h2 + ah1h2
(1 + ah2 − ah2x) −

∞∑
i=1

2h2
1a

3(h1 + h2)ki(sin(kix) + ki cos(kix)/ah1)

(a2h2
1 + k2

i )(ak2
i (h1 + h2) + (a2h1h2 + k2

i ) sin2(ki))
e−k2

i t

(3)

where the eigenvalues ki are determined by the following equation

tan(ki) = aki(h1 + h2)

k2
i − a2h1h2

, i = 1, 2, 3 . . . . (4)

123



Thermal-stress analysis for a strip of finite width 163

Notice that if hi → +∞ (i = 1, 2), the thermal boundary conditions are reduced to θ = θi ; and if hi → 0 (i = 1, 2),
the thermal boundary conditions are reduced to the thermally insulating boundary condition, namely ∂θi/∂n = 0.
The thermal-stress field can be obtained (in the spirit of [9]) for the uncracked infinite strip as follows

σT
Y (X, τ) = −σT

0 θ(x, t). (5)

In (5), the thermal stress is scaled by σT
0 = αE�1, where E is E/(1−υ)for the plane stress case, and is E/(1−2υ)

for the plane strain case; with E, υ and α denoted for Young’s modulus, the Poisson ratio, and the coefficient of
thermal expansion, respectively.

3 Crack problem

3.1 Formulation

Consider an infinite strip containing an infinite row of edge cracks normal to its edge (shown in Fig. 1). Denote the
horizontal and vertical displacements as U and V . The following normalized quantities are introduced:

x = X/a, y = Y/a, u(x, y) = U(X, Y )/a, v(x, y) = V (X, Y )/a.

The governing equations for the normalized displacements u and v of the plane elasticity are

(κ − 1)∇2u + 2

(
∂2u

∂x2 + ∂2v

∂x∂y

)
= 0, (κ − 1)∇2v + 2

(
∂2u

∂x∂y
+ ∂2v

∂y2

)
= 0, (6)

where κ = 3 − 4ν for the plane strain case, and κ = (3 − ν)/(1 − ν) for the plane stress case. The Laplace operator
is denoted by ∇2 = ∂/∂x2 + ∂/∂y2. The stress-displacement relations for the plane problem are:

sx = µ

κ − 1

(
(κ + 1)

∂u

∂x
+ (3 − κ)

∂v

∂y

)
, sy = µ

κ − 1

(
(κ + 1)

∂v

∂y
+ (3 − κ)

∂u

∂x

)
, sxy = µ

(
∂u

∂y
+ ∂v

∂x

)
,

(7)

where, µ denotes the shear modulus, and sx, sy, sxy denote various components of stress.
A representative cell is selected as in Fig. 2. In accordance with the periodicity and the symmetry of the crack

problem, the boundary conditions of the representative cell are

Fig. 1 Configuration of an array of edge cracks and the temper-
ature differences from the edge

Fig. 2 A representative cell
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x = 0 : sx = sxy = 0, (8)

x = 1 : sxy = u = 0, (9)

y = b : sxy = v = 0, sxy(x, 0) = 0, (10)

y = 0 :
{

v(x, 0) = 0 c < x < 1,

sy(x, 0) = p(x) 0 ≤ x ≤ c,
(11)

where p(x) represents the load along the crack faces.

3.2 Solution of the crack problem

The differential equations (6) are solved by expressing u and v in terms of Fourier series of the following forms [8]⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(x, y) = f0(x) +
∞∑
i=1

fi(x) cos(βiy) +
∞∑

j=1

hj (y) sin(αjx),

v(x, y) = q0(y) +
∞∑
i=1

gi(x) sin(βiy) +
∞∑

j=1

qj (y) cos(αjx),

(12)

where αi = iπ and βj = jπ/b. Substituting (12) in (6), one obtains a system of ordinary differential equations for
the unknown functions f0, fi, g0, q0, qj , hj (i, j = 1, 2, . . .). After lengthy but straightforward computations, the
expressions for the displacements and stresses are obtained as follows:

u(x, y) = u0 + u1x +
∞∑
i=1

((Li + Mix) sinh(xβi) + (Ni + Pix) cosh(−xβi)) cos(βiy)

+
∞∑

j=1

((Qj + Rjy) sinh(αjy) + (Sj + Tjy) cosh(αjy)) sin(αjx), (13)

v(x, y) = v0 + v1y +
∞∑
i=1

([(Li + Mix + κPi/βi)) cosh(xβi) − (Wi + Pix + κMi/βi) sinh(xβi)) sin(βiy)

−
∞∑

j=1

(Sj + Tjy − κRj/αj ) sinh(αjy) + (Qj + Rjy − κTj/αj ) cosh(αjy)] cos(αjx),

where u0, u1, Li,Mi,Ni, Pi and v0, v1,Qj , Rj , Sj , Tj are the functions related to i and j , respectively.
Routinely, one may derive the stress fields. After lengthy but straightforward algebra, one obtains the following
integral equation:∫ c

0
φ(t)F (x, t)dt = p(x), (14)

where

φ(x) = 4µ

1 + κ

∂v(x, 0)

∂x
, (0 ≤ x ≤ c)

F (x, t) = 2

b
t +

∞∑
i=1

2 coth(biπ)(1 + 2biπ csc h(2biπ)) cos(iπx) sin(iπt)

−8b

π

∞∑
i=1

∞∑
j=1

ij2 sin(iπt)

(b2i2 + j2)2(b + 2jπ csc h(
2jπ
b

))

{
sinh

(
jπx

b

) (
jπx − b tanh

(
jπ

b

))

+ cosh

(
jπx

b

) (
2jπ csc h

(
2jπ

b

)
+ jπx tanh

(
jπ

b

)
− b

)}

123



Thermal-stress analysis for a strip of finite width 165

Now the crack problem is reduced to the solution of integral equation (14). Various quantities u0, u1, Li,Mi,Ni, Pi

and v0, v1,Qj , Rj , Sj , Tj can be expressed in terms of φ(x), as shown in the Appendix. One notices that the term
related to κ is absent in Eq. (14). This emphasizes the indifference for SIFs between the plane-stress and the
plane-strain elasticity under traction loading, although the displacement fields are different.

3.3 Stress-intensity factors

The Muskhelishvilli technique [10, Chapt. 6] can be used to explore the singular behavior of the solution of the
integral equation (14) around the irregular points. For the edge cracks, the unknown function φ(s) may be expressed
as

φ(s) = ϕ(s)√
c − s

, (15)

where ϕ(s) is a continuous and bounded function in the interval 0 ≤ s ≤ c. We choose ϕ(s) in a Taylor-series form,
ϕ(s) = ∑N

i=0 γis
i , in this paper. The SIF at the crack tip is

KI (c1) = −√
2aϕ(c). (16)

To solve the integral equation (14), the following normalized variable is introduced in the interval [0, c]:
x = c(1 + r)/2

and the following integration points are chosen as in [11]:

ri = cos

(
2iπ

2N + 3

)
, i = 1, 2, . . . , N + 1.

Equation (14) can be integrated by the Filon numerical integral method and a linear equation can be obtained. The
problem is transformed to a series of linear equations about γi .

3.4 Validations

The results from the PM (present method) are validated in this section by the results from the FEM (finite-
element method). A mesh configuration for the latter is shown in Fig. 3. Under different loads p(x) = xn

(n = 0, 1, 2, . . . , 10) and under different configurations (b and c), the normalized SIFs kI = KI/
√

πc1 are
obtained. Hereafter N = 15 is adopted in all demonstrative calculations. Table 1 indicates that good agreement has
been achieved between the PM and the FEM, with the difference only occurring in the fourth significant digit.

3.5 Thermal stresses

The advantage of the present method lies in its versatility on handling arbitrary crack-face tractions. This capability
is of particular relevance for the case of combined thermal/mechanical loading. To illustrate this point, attention is
focused on the thermal-stress problem of a stack of periodically distributed edge cracks normal to the boundary of
an infinite strip. In this section, we assume that both h1 and h2 tend to infinity. Accordingly, the temperature field
is reduced to

θ(x, t) = (1 − x) −
∞∑
i=1

2 sin(iπx)

iπ
e−i2π2t . (17)

The normalized temperature and stress distributions at different instants are shown in Fig. 4. Apparently, the thermal
stress at a fixed location increases as the time increases; while the thermal stress at a certain time decreases as the
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Thermal-stress analysis for a strip of finite width 167

Fig. 3 The finite-element mesh Fig. 4 Distributions of normalized temperature and stress at
different instants t

distance from the crack-edge increases. After a period of time, the temperature distribution approaches a steady
state, linear distribution with the x-coordinate.

For the convenience of the description, the normalized SIF is defined as follows:

kI = KI/σ
T
0

√
πc1.

The normalized SIFs under only thermal loads are given in Fig. 5 for various crack lengths and separations. The
following features are observed from Fig. 5.

1. After the thermal shock, the SIFs are initially very small since the temperature shock does not smear out in the
length of strip. The normalized SIFs are plotted against the normalized time on a logarithmic scale (log10(t))
for different values of b and c. The normalized SIFs always approach the limits, set by SIFs under linearly
loaded traction distribution, as the time parameter t exceeds that required to reach a steady state.

2. The normalized SIFs exhibit the same trend for different values of b, reflecting the vertical spacing between
the neighboring cracks. All results reveal that the SIFs decrease as b decreases. That is the well-known shield-
ing effect for parallel cracks. The present investigation confirms the effectiveness of shielding for the case of
thermal-shock loading.

3. Also apparent in those figures is the influence of c on the SIFs. As c increases, the normalized SIFs decrease
when b is less than a certain value (Fig. 5a–c). However, the abnormal phenomena will appear when b reaches
that critical value (Fig. 5 (d)).

3.6 Application to linear load

The temperature-distribution equation (5) reveals that the temperature fields and the stress fields become steady and
linear after a certain period of time. That provides a strong impetus to study the problem of linearly distributed load
on the crack surfaces. Figures 6 and 7 illustrate the variations of SIFs for the crack-face loadings of p1(x) = 1.0
and p2(x) = 1.0 − x, respectively. The following features are observed.
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168 H. Qing et al.

Fig. 5 Normalized SIFs of an infinite stack of periodically distributed edge cracks for different values of b, c and t

Fig. 6 Normalized SIFs of an infinite stack of periodically dis-
tributed edge cracks for different values of b and c under the
uniform load p(x) = 1.0

Fig. 7 Normalized SIFs of an infinite stack of periodically dis-
tributed edge cracks for different values of b and c under the
linear load p(x) = 1.0 − x

Under a uniform load p1, the normalized SIFs increase as b increases, which confirms the effectiveness of
shielding. At the same b value, the SIFs decrease as c increases when c ≤ 0.5, and increase as c increases when
c ≥ 0.6.

Under the linear load p2, almost the same phenomena occur, except that the normalized SIFs at c = 0.05 are
always larger than those at the other c-values plotted. As indicated by Fig. 4, the load p2 corresponds to the limit
case for the problem discussed in Sect. 3.5.

One may obtain the solution for an arbitrary linear loading by combining the above two results.
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Thermal-stress analysis for a strip of finite width 169

4 Conclusions

An infinite strip containing an infinite row of periodically distributed edge cracks normal to the edge has been
studied. The configuration constitutes a simplified case of parallel shallow surface cracks exposed to thermal-shock
loadings. An integral-transform technique was applied to characterize the transient SIFs under thermal-stress load-
ing. A singular integral equation was deduced for general distributed pressure on the crack surfaces, and the results
can be obtained through numerical solution to the singular integral equation.

An important feature of our work is to study the key dimensionless groups of different physical parameters.
We normalized the problem so that the number of parameters are reduced. In the tested problem, the agreement
between the results from the singular-integral-equation method and the FEM for different geometrical and loading
parameters validates the accuracy of the integral-equation method. The transient normalized SIFs for edge cracks
are given in Fig. 5, for various crack lengths and separations. The linear loads on the crack surfaces are discussed and
the results are illustrated in Figs. 6 and 7. Although this thermo-mechanical crack problem has a simple geometry,
the figures can be used, as a conservative estimate, to evaluate the severity of thermal shock in brittle materials by
comparing the calculated SIFs with the fracture toughness of the material under consideration.

Acknowledgements The authors acknowledge the financial support from FRAMATOME-ANP.

Appendix: Expressions for various quantities in calculating the displacements

Ri = 1

µ
coth(biπ)

∫ d

c

φ(t) sin(iπt)dt, Si = 1 − κ + 4biπ csc h(2biπ)

2iπ
Ri, Qi = (1 − κ)

2iπ
tanh(biπ)Ri,

Ti = − tanh(biπ)Ri, Pj = 4a3b2j2

π(b + 2ajπ csc h(
2jπ
b

))

∞∑
i=1

i tanh(biπ)

(b2i2 + j2)2 Ri,

Lj = −
(

b(1 + κ)

2jπ
+ 2 csc h

(
2jπ

b

))
Pj , Mj = − tanh(jπ/b)Pj , Wj = b(1 + κ)

2jπ
tanh

(
jπ

b

)
Pj ,

v1 = (1 + κ)

4bµ

∫ d

c

tφ(t)dt, u0 = 3 − κ

1 + κ
v1, u1 = −3 − κ

1 + κ
v1, v0 = −bv1.
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